201 research outputs found

    Deep Mean-Shift Priors for Image Restoration

    Full text link
    In this paper we introduce a natural image prior that directly represents a Gaussian-smoothed version of the natural image distribution. We include our prior in a formulation of image restoration as a Bayes estimator that also allows us to solve noise-blind image restoration problems. We show that the gradient of our prior corresponds to the mean-shift vector on the natural image distribution. In addition, we learn the mean-shift vector field using denoising autoencoders, and use it in a gradient descent approach to perform Bayes risk minimization. We demonstrate competitive results for noise-blind deblurring, super-resolution, and demosaicing.Comment: NIPS 201

    Challenges in Disentangling Independent Factors of Variation

    Full text link
    We study the problem of building models that disentangle independent factors of variation. Such models could be used to encode features that can efficiently be used for classification and to transfer attributes between different images in image synthesis. As data we use a weakly labeled training set. Our weak labels indicate what single factor has changed between two data samples, although the relative value of the change is unknown. This labeling is of particular interest as it may be readily available without annotation costs. To make use of weak labels we introduce an autoencoder model and train it through constraints on image pairs and triplets. We formally prove that without additional knowledge there is no guarantee that two images with the same factor of variation will be mapped to the same feature. We call this issue the reference ambiguity. Moreover, we show the role of the feature dimensionality and adversarial training. We demonstrate experimentally that the proposed model can successfully transfer attributes on several datasets, but show also cases when the reference ambiguity occurs.Comment: Submitted to ICLR 201

    Disentangling Factors of Variation by Mixing Them

    Full text link
    We propose an approach to learn image representations that consist of disentangled factors of variation without exploiting any manual labeling or data domain knowledge. A factor of variation corresponds to an image attribute that can be discerned consistently across a set of images, such as the pose or color of objects. Our disentangled representation consists of a concatenation of feature chunks, each chunk representing a factor of variation. It supports applications such as transferring attributes from one image to another, by simply mixing and unmixing feature chunks, and classification or retrieval based on one or several attributes, by considering a user-specified subset of feature chunks. We learn our representation without any labeling or knowledge of the data domain, using an autoencoder architecture with two novel training objectives: first, we propose an invariance objective to encourage that encoding of each attribute, and decoding of each chunk, are invariant to changes in other attributes and chunks, respectively; second, we include a classification objective, which ensures that each chunk corresponds to a consistently discernible attribute in the represented image, hence avoiding degenerate feature mappings where some chunks are completely ignored. We demonstrate the effectiveness of our approach on the MNIST, Sprites, and CelebA datasets.Comment: CVPR 201

    3D Shape Completion with Multi-view Consistent Inference

    Full text link
    3D shape completion is important to enable machines to perceive the complete geometry of objects from partial observations. To address this problem, view-based methods have been presented. These methods represent shapes as multiple depth images, which can be back-projected to yield corresponding 3D point clouds, and they perform shape completion by learning to complete each depth image using neural networks. While view-based methods lead to state-of-the-art results, they currently do not enforce geometric consistency among the completed views during the inference stage. To resolve this issue, we propose a multi-view consistent inference technique for 3D shape completion, which we express as an energy minimization problem including a data term and a regularization term. We formulate the regularization term as a consistency loss that encourages geometric consistency among multiple views, while the data term guarantees that the optimized views do not drift away too much from a learned shape descriptor. Experimental results demonstrate that our method completes shapes more accurately than previous techniques.Comment: Accepted to AAAI 2020 as oral presentatio

    Anisotropic noise

    Get PDF
    Programmable graphics hardware makes it possible to generate procedural noise textures on the fly for interactive rendering. However, filtering and antialiasing procedural noise involves a tradeoff between aliasing artifacts and loss of detail. In this paper we present a technique, targeted at interactive applications, that provides high-quality anisotropic filtering for noise textures. We generate noise tiles directly in the frequency domain by partitioning the frequency domain into oriented subbands. We then compute weighted sums of the subband textures to accurately approximate noise with a desired spectrum. This allows us to achieve high-quality anisotropic filtering. Our approach is based solely on 2D textures, avoiding the memory overhead of techniques based on 3D noise tiles. We devise a technique to compensate for texture distortions to generate uniform noise on arbitrary meshes. We develop a GPU-based implementation of our technique that achieves similar rendering performance as state-of-the-art algorithms for procedural noise. In addition, it provides anisotropic filtering and achieves superior image quality.National Science Foundation (U.S.) (CAREER Award 0447561)Microsoft Research (New Faculty Fellowship)Alfred P. Sloan Foundation (Fellowship
    • …
    corecore